4 research outputs found

    Non-Convex and Geometric Methods for Tomography and Label Learning

    Get PDF
    Data labeling is a fundamental problem of mathematical data analysis in which each data point is assigned exactly one single label (prototype) from a finite predefined set. In this thesis we study two challenging extensions, where either the input data cannot be observed directly or prototypes are not available beforehand. The main application of the first setting is discrete tomography. We propose several non-convex variational as well as smooth geometric approaches to joint image label assignment and reconstruction from indirect measurements with known prototypes. In particular, we consider spatial regularization of assignments, based on the KL-divergence, which takes into account the smooth geometry of discrete probability distributions endowed with the Fisher-Rao (information) metric, i.e. the assignment manifold. Finally, the geometric point of view leads to a smooth flow evolving on a Riemannian submanifold including the tomographic projection constraints directly into the geometry of assignments. Furthermore we investigate corresponding implicit numerical schemes which amount to solving a sequence of convex problems. Likewise, for the second setting, when the prototypes are absent, we introduce and study a smooth dynamical system for unsupervised data labeling which evolves by geometric integration on the assignment manifold. Rigorously abstracting from ``data-label'' to ``data-data'' decisions leads to interpretable low-rank data representations, which themselves are parameterized by label assignments. The resulting self-assignment flow simultaneously performs learning of latent prototypes in the very same framework while they are used for inference. Moreover, a single parameter, the scale of regularization in terms of spatial context, drives the entire process. By smooth geodesic interpolation between different normalizations of self-assignment matrices on the positive definite matrix manifold, a one-parameter family of self-assignment flows is defined. Accordingly, the proposed approach can be characterized from different viewpoints such as discrete optimal transport, normalized spectral cuts and combinatorial optimization by completely positive factorizations, each with additional built-in spatial regularization
    corecore